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Abstract. On conjectural grounds we present an equation that provides a very good 
approximation for the critical temperature of the fully anisotropic homogeneous quenched 
bond-random q-state Potts ferromagnet in triangular and honeycomb lattices. Almost all 
the exact particular results presently known for the square, triangular and honeycomb 
lattices are recovered; the numerical discrepancy is quite small for the few exceptions. 
Some predictions that we believe to be exact are also made explicit. 

1. Introduction 

A certain amount of effort is presently being devoted to the study of random models, 
in particular the quenched bond-random q- state Potts model (characterised by the 
Hamiltonian 5Y = -q Xz,jJij8u,,u, where vi = 1, 2 , .  . . , q for all sites) in regular lattices 
(see Southern and Thorpe 1979, Tsallis 1981a, 1983, de Magalhles e f  a1 1982 and 
references therein; for an excellent review see Wu 1982). As the discussion of this 
class of models is very complex, only a few exact facts are known so far. In particular, 
the exact critical points for the pure model, as well as the limiting critical slopes for 
the bond-dilute model, have already been established for some two-dimensional 
lattices (Baxter et a1 1978, Burkhardt and Southern 1978, Hintermann et a1 1978, 
Southern and Thorpe 1979, Tsallis 1982, Wu and Stanley 1982). 

In this paper we are concerned with a very general ferromagnetic model in which 
we associate arbitrary (and independent) probability laws for the coupling constants 
along the three crystalline axes of the triangular and honeycomb lattices. We focus 
on the critical temperatures T, of these two cases. By following along the conjectural 
lines of Tsallis (1981a) (a quite detailed discussion of the square lattice case) and 
Tsallis (1983) (a preliminary discussion of the triangular lattice case), we propose 
relatively simple equations for T,, which presumably are excellent approximations as 
they recover a considerable amount of exact particular results. 

I/ Guggenheim Fellow. 
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This paper is organised as follows: in 3: 2 we introduce a convenient formalism 
and in lip 3 and 4 we discuss the triangular and honeycomb cases, respectively. 

2. Formalism 

In this section we present convenient nomenclature and relations that will be used 
further on. First let us introduce (Domb 1974) a bond variable, referred to as thermal 
transmissivity (Tsallis and Levy 1980, 1981 and references therein; see also Yeomans 
and Stinchcombe 1980), through the definition 

t ~ [ l - e X p ( - q J / k ~ T ) ] / [ l  + (q -1 )  eXp(-qJ /k~T)]€[o ,  11. (1) 

If we consider two bonds with coupling constants J1 and JZ we obtain, for the equivalent 
transmissivity t ,  of a series array, 

t s  = t112, (2) 

t ,  = [tl + tZ + (4  - 2)flf21/[1 + (4 - l)flt21. 

and, for the transmissivity t ,  of a parallel array, 

(3) 

The latter can be rewritten in a series-like form as 

(4) D D D  t ,  = t 1  t z  

where 

t? = (1 - t i ) / [ l  + (q  - 1)ti] (i = 1 , 2 , p )  ( 5 )  

If J is a random variable and P ( J )  the associated distribution law, then the 
and where D stands for ‘dual.’ 

distribution law for t ,  denoted Q(t ) ,  is given by 

The corresponding law QD(rD) in the tD variable is given by 

(7) 

The distribution law Q,(t) associated with a series array of two bonds with 
distribution laws Ql( t )  and Q 2 ( t )  is given by 

= [ dtl [ dtz Qlitl)Q(tdS(t - t l h )  

This product (from now on referred to as series product or s product) recovers, for 
q = 1, that introduced in Tsallis (1981b). Furthermore, it recovers, for Qi(r) = S ( t  - t i )  
(i = 1,2),  equation (2). We can verify that the s product is closed (i.e. it preserves 
the norm), commutative, associative, admits a neutral element (namely S (t - l ) ) ,  but 
not an inverse, i.e. its structure is that of an abelian monoid (semigroup with neutral 
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element); as a matter of fact it is easy to prove (through the transformation t = e-”) 
that it is isomorphic to the convolution product. 

If our array is a parallel one the associated law Q,(t) is given by 

E QiDQ2. 

This product (from now on referred to as parallel product or p product) has the same 
structure as the s product, the neutral element now being s ( t ) ;  it recovers algorithm 
(3) and the p product introduced in Tsallis (1981b) as particular cases. It is straightfor- 
ward to prove that 

(Qi@Q,)”=QP @a?, (10) 

thus generalising equation (4) and exhibiting the isomorphism between the s and 
p products. 

It is clear that algorithms (8) and (9) allow the calculation of any two-rooted graph 
(or array) sequentially reducible by series and parallel operations (e.g. that of figure 1). 

Figure 1. Two-rooted graph. 0 denotes the roots or terminal nodes; 0 denotes the 
internal nodes. 

Before closing this section, let us introduce (Tsallis 1981a, Alcaraz and Tsallis 

(11) 

1982, Tsallis and de Magalhdes 1981) another convenient variable through 

s ( t )  = In[ 1 + (q  - l)t]/ln q E [O, 13. 

It satisfies the following remarkable property 
D s (t)=s(rD) = 1 - s ( t ) ,  

i.e. s transforms, under duality, like a probability ; this fact plays an important role in 
the conjecture we shall present later on. Note also that s coincides with t in the limit 
q + 1. The distribution law R ( s )  in the s variable is related to Q ( t )  through 

Furthermore, the distribution law associated with sD is given by 

RD(sD) = R (1 -sD). (14) 
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3. Triangular lattice 

Let us consider a triangular lattice to the bonds of which we associate q-state Potts 
ferromagnetic interactions. The corresponding coupling constants J along the three 
crystalline axes are respectively and independently distributed according to the laws 
Pk(J) (k = 1,  2, 3) .  Through equations (6) and (13) these laws univocally determine 
{ Q k ( t ) }  and {Rk(S)} .  This quite general model presents a phase transition at a tem- 
perature T, which is still unknown (except for some particular cases described later 
on). Before stating our proposal for this quantity, let us briefly consider the pure case 
(i.e. Q k  ( t )  = S ( t  - tk) ) .  The transmissivities ?A and f y D  respectively associated with the 
three-rooted graphs in figure 2(a ) ,  ( b )  can be calculated by using the break-collapse 
method (Tsallis and Levy 1981), and are given by 

D D D D D D  
fYD(f1  3 f 2  , f 3  = t l  f 2  f 3  * 

i n !  i b !  

(C! id1 

Figure 2. Three-rooted graphs. The t’s are the associated transmissivities (D stands for 
‘dual’; see equation (5)) .  The pair a-b (c-d) is the relevant one for the triangular 
(honeycomb) lattice. 

It is easy to verify that the equation 

f A  = tYD (17) 
provides the exact critical point (Baxter et a1 1978, Burkhardt and Southern 1978, 
Hintermann et a1 1978). This is essentially a compact way of performing the standard 
duality and star-triangle transformations. 

Let us now go back to the general case where we replace, in figure 2(a) ,  { t k }  by 
{ Q k ( f ) }  and, in figure 2 ( b ) ,  If:} by { Q F ( t F ) } .  The distributions Q A ( t )  and QyD(tD) 
respectively associated with the triangle and star graphs are given by 
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and 

These distributions univocally determine, through use of definitions (1) and (1 1) and 
inversion of equations (6) and (13), PA(J) ,  P Y D ( J ~ ) ,  R A ~ )  and R Y D ( ~ ~ )  ( JD and tD 
satisfy equation (1)). Note that: (a) QYD is in general different from (Qy)D where QY 

is obtained by associating, with the star graph, { a k }  instead of {a:}; (b) Q Y D =  

QY @ QY @ QY ; (c) the particular case Q 3 ( t )  = S ( t )  (square lattice) leads to QA = 

QI @ Q2 and QYD = Q? @ Q? = ( Q I @ Q ~ ) ~ ;  (d) the particular case Q 3 ( t )  = S ( t  - 1) 
leads to QA = Ql@Qa,  = (a’: @ a?)” and Q y D ( t D )  = S(tD). 

By conjecturally extending equation (17) we propose, for the critical temperature 
T, of the general model, the equation 

( s ) A =  J ds sRA(s) = J dt{ln[l + (q  - l)t]/ln q } Q A ( t )  
0 0 

We shall exhibit that equation (20) recovers almost all the exact particular results 
presently known; it fails, however, with respect to the pure Potts limiting slope for the 
bond-dilute model. The exact asymptotic behaviour in the pure percolation limit of 
the bond-dilute model is recovered, and this is so because, in equation (20), we have 
averaged the s variable (instead of t, for instance); see Levy et a1 (1980), Tsallis 
(1981a), de Magalhles et a1 (1982). 

Let us first consider the q + 1 limit (hence s = t ) :  we verify that equation (20) leads 
to 

where 
,-I 

Consequently, equation (20) satisfies the Kasteleyn and Fortuin (1969) theorem (the 
q + 1 Potts ferromagnet is isomorphic to bond percolation with t k  = 1 -exp( - Jk/kBT) 
(see equation (1))) as equation (23) precisely reproduces the form of the bond 
percolation critical exact equation (Sykes and Essam 1963) 



3606 C Tsallis and R J V dos Santos 

For the particular case Qk( t )  = 8 ( t  - t k )  (k = 1 ,2 ,3 ) ,  equation (20) clearly leads, for 
all q, to the exact equation (17). Furthermore, we consider the following generalised 
bond-dilute model 

(26) P k  (J) = (1  - P k  18 ( J )  +Pkpk  (J) 

where the laws A(J) satisfy, besides the norm condition 

(k = 1 , 2 , 3 )  

the restriction 
r E  

(i.e. pk(J) does not grow, in the limit J + O ,  as 1/J or faster). It is clear that this 
model must lead, in the limit T,  -+ 0 and for all q, to the bond percolation equation 
(25). This is precisely what equation (20) provides, the asymptotic behaviour being 

m 

1 (1  -Pipj)Pk Io dJkpk((Jk)exp(-qJk/k,Tc). (29) 
k = l  k = l  lnq i # j # k  

For theparticularisotropiccasepk = p andFk(Jk) = S(Jk - J ) , V ~ ,  thisequationprovides 

(30) 

where p c  denotes the bond percolation critical probability. Equation (30) is known 
to be exact (Southern and Thorpe 1979). As a matter of fact we believe that equation 
(29) is exact for the generafised bond-dilute model (see Tsallis (1981a) for a similar 
situation in the square lattice). A different situation is found at the opposite limit 
(maximum T,, hence Pk + 1, V k )  of the model determined by equation (26). In the 
case p k ( J )  = S ( J  - J k )  the limiting T,  is exact, but its asymptotic behaviour is wrong 
for all q # 1, as can be exhibited for the particular isotropic case mentioned above. 
The error is however very small for 1 < q < 4 (we recall that for q > 4 the transition 
is a first-order one (Baxter 1973)). Equation (20) provides 

[ l l T ~ ( l ) l [ d ~ ~ ( ~ ) l d ~ l I , = 1  

q - 1  3 3 

1 pk- n pk- l - -  

d exp( -qJ /k~~c(p) ) ldp l ,= , ,  = In q/pC(q - I) ,  

1 .2472. .  . (1 .2472. .  . ; 0% error) for q = 1 
1.1925..  . (1.1877..  . ; 0.40% error) forq = 2  
1.1634. .  , (1 .1506. .  . ; 1.11% error) for q = 3 =I 1.1447. .  . (1 .1246. .  . ; 1.79% error) for q = 4 

where, between parentheses, we have indicated the exact results (Southern and Thorpe 
1979) as well as the discrepancies. 

These discrepancies being quite small, we can consider equation (20) to be an 
approximation for T, good enough for a great variety of purposes. In particular it 
leads, for the isotropic bond-dilute model, to 

3p l n [ l + ( q  - l ) t ] - p 3 ~ n [ l + ( q - l ) t 3 ] = 1 n q ,  (32) 
which, for q = 2, recovers the renormalisation group result presented in de Magalhles 
et al (1982) (equation ( 1 1 )  therein); let us stress that equation (32) is exact in both 
critical point and derivative in the p + p c  limit but only in the critical point in the 
p + 1 limit. 

(31) 
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Before concluding this section, let us mention that equation (20) generalises the 
Tsallis (1981a) proposal for the square lattice. Indeed, if we consider the particular 
case P 3 ( J )  = S ( J )  equation (20) can be rewritten as 

b ) P ,  O P 2  = ( S ) P ? O P P  (33)  

b ) P ,  = ( S ) P ?  (34)  

hence 

which is precisely equation ( 1 3 )  in Tsallis (1981a). It is worthwhile recalling that, with 
respect to T,, equation ( 3 5 )  exactly satisfies (a) the Kasteleyn and Fortuin (1969) 
theorem in the limit q + 1, (b) the equal probability model (see Fisch 1978), (c) the 
bond-dilute model in the T, + 0 limit (both the limit and the asymptotic behaviour), 
(d) the bond-dilute model in the pure Potts limit (only the limit; it slightly fails in the 
asymptotic behaviour for q # 1). 

4. Honeycomb lattice 

The honeycomb lattice being the dual of the triangular lattice, this section closely 
follows the preceding one. Now the laws &(J) (k = 1, 2 ,  3 )  are to be associated with 
the three crystalline directions of a honeycomb lattice. The transmissivities t y  and 
tAD respectively corresponding to figures 2 ( c ) ,  ( d )  are given by 

(36)  f Y ( f l ,  f2 ,  t3) = t l f 2 t 3  

It is easy to verify that the pure Potts model ( P k ( J )  = S ( J  -Jk), t l k )  exact critical point 
(Baxter et a1 1978, Burkhardt and Southern 1978, Hintermann et a1 1978) is now 
provided by the equation 

t y  = #?AD. (38)  

For general laws {Pk(J)}, equations (36)  and (37)  are respectively extended into 

Note that (a) QY = 0, @ Q2 @ Q3; (b) the particular case Q 3 ( t )  = S ( t  - 1) (square 
lattice) leads to QY = Q1 0 0 2  and  AD = gy @ Q? ; (c) the particular case Q 3 U )  = 
6 ( t )  leads to Qy = S ( t )  and QAD = Q 1  aQ2 = (QI @ Q2)D. 

The proposal for T, will now be 

b ) Y =   AD (41)  
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m 

= 1 - Jo ~ J D  {ln[l+ (4 - l)exp( -qJD/k~Tc)] / ln  ~ } P A D ( J ~ )  (43) 

(the definitions of the quantities R y ,  P y ,  R A D  and P A D  are self explanatory within 
the adopted notation). 

As for the triangular lattice case, equation (41) recovers almost all the exact 
particular results presently known; it fails however with respect to the pure Potts 
limiting slope for the bond-dilute model. The q + 1 limit provides 

which precisely reproduces the form of the bond percolation critical exact equation 
(Sykes and Essam 1963), 

and therefore the Kasteleyn and Fortuin (1969) theorem is satisfied. 

the T,+ 0 limit, to 
If we consider the model characterised by equation (26), equation (41) leads, in 

1 .m 

(46) 

For the particular isotropic case Pk = p  and p k k ( J k ) = s ( J k  - J )  ( V k ) ,  this equation 
provides the exact result (Southern and Thorpe 1979), namely equation (30), p c  now 
being the critical probability corresponding to the honeycomb lattice. As for the 
triangular lattice case, we believe that equation (46) is exact for the generalised 
bond-dilute model. This is not so for the opposite limit (maximum T, hence Pk + 1, 
V k )  of this model. In particular for the case pk(J) = S ( J - J k )  the limiting T, is exact, 
but not the asymptotic behaviour for q f 1. For the particular isotropic case we obtain, 
from equation (41), 

1.7770. . . (1 .7770. .  . ; 0% error) forq = 1 
1.5998.. , (1.5782.. . ; 1.37% error) for 4 = 2 
1.5142.. . (1.4659.. . ; 3.30% error) for q = 3 = I  1.4609.. . (1.3863.. . ; 5.39% error) for q = 4 

(47) 
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where, between parentheses, we have indicated the exact results (Southern and Thorpe 
1979) as well as the discrepancies. It is straightforward to obtain, from equation (41), 
the whole critical line: 

3p2(1-p) ln [ l+(q-  l ) t ’ ]+p31n[ l+3(q- l ) t2+(q- l ) (q  -2) t3]=lnq.  (48) 

This equation recovers, for q = 2, the renormalisation group result presented in de 
Magalhies et a1 (1982, equation (14)); let us stress that equation (48) is exact in both 
critical point and derivative in the p + p c  limit, but only in the critical point in the 
p + 1 limit. 

The square lattice result (equation (35)) can be reobtained by taking Q 3 ( t )  = 8 ( t  - 1) 
in equation (41). 

5. Conclusion 

The fully anisotropic homogeneous quenched bond-random q- state Potts ferromagnet 
is a fairly general model, and its critical temperature T, is unknown for all lattices 
with dimensionality higher than one. However, a certain amount of particular exact 
results are already available for some lattices such as the triangular and honeycomb 
ones, Following along the conjectural lines of Tsallis (1981a) we propose equations 
for T, (equation (20) for the triangular lattice and equation (41) for the honeycomb; 
both equations contain the Tsallis (1981a) proposal for the square lattice as a particular 
case) which are believed to provide numerically excellent approximations (at least for 
1 < q  == 4; they are exact for q = 1). They both satisfy the Kasteleyn and Fortuin 
(1969) theorem, which is herein expressed in a quite general form (the q + 1 limit 
of the quenched bond-random Potts ferromagnet is isomorphic to bond percolation). 
They both recover the exact T, for the anisotropic (arbitrary non-negative J1, J2 and 
J3) pure Potts model and the exact percolation critical surface (in the p1-p2-p3 space) 
in the Tc+ 0 limit of a generalised bond-dilute model (characterised by equation (26)). 
Futhermore, they provide new particular asymptotic behaviours (equation (29) for 
the triangular lattice, and equation (46) for the honeycomb one), which are possibly 
exact. Finally, for the standard isotropic bond-dilute model, they provide simple 
analytical equations (equation (32) for the triangular lattice and equation (48) for the 
honeycomb one), which although not exact (in the p + p c  limit both the critical point 
and asymptotic behaviour are exact, but in the p + 1 limit only the critical point is 
exact, the corresponding asymptotic behaviour presenting a numerically small failure), 
can be useful for several purposes as long as the exact equations remain unknown; 
the biggest estimated error (in the t variable) they introduce presumably occurs midway 
between p = p c  and p = 1 and increases from 0% for q = 1 to about 1% for the 
triangular lattice (0.5% for the honeycomb lattice) for q = 4. 

Acknowledgments 

It is with pleasure that we acknowledge the hospitality of Professors H E Stanley, W 
Klein, S Redner and other members of the Center for Polymer Studies at Boston 
University during our stay there. One of us (CT) also acknowledges related and useful 
conversations with F Y  Wu and I Syozi. RJVS gratefully acknowledges the partial 
support he has received from CAPES/Brazil and OEA. 



3610 C Tsallis and R J V dos Santos 

References 

Alcaraz F C and Tsallis C 1982 J. Phys. A: Math. Gen. 15 587 
Baxter R J 1973 J.  Phys. C: Solid State Phys. 6 L445 
Baxter R J, Temperley H N V and Ashley S E 1978 Proc. R .  Soc. A 358 535 
Burkhardt T W and Southern B W 1978 J. Phys. A: Math. Gen. 11 L247 
Domb C 1974 J. Phys. A: Math., Nucl. Gen. 7 1335 
Fisch R 1978 J.  Stat. Phys. 18 111 
Hintermann A, Kunz H and Wu F Y 1978 J.  Stat. Phys. 19 623 
Kasteleyn P W and Fortuin C M 1969 I. Phys. Soc. Japan (Suppl )  26 11 
Levy S V F, Tsallis C and Curado E M F 1980 Phys. Reo. B 21 2991 
de Magalhies A C N, Schwachheim G and Tsallis C 1982 I .  Phys. C: Solid State Phys. 15 6791 
Southern B W and Thorpe M F 1979 J. Phys. C: Solid State Phys. 12 5351 
Sykes M F and Essan J W 1963 Phys. Reo. Lett. 10 3 
T~allis C 1981a J. Phys. C: Solid State Phys. 14 L85 
- 1981b Kinam (Mexico) 3 79 
- 1982 J. Phys. C: Solid State Phys. 15 L757 
- 1983 J.  Magn. Magn. Mat. 31-34 
Tsallis C and Levy S V F 1980 J .  Phys. C: Solid State Phys. 13 465 
~ 1981 Phys. Reo. Lett. 47 950 
Tsallis C and de Magalhies A C N 1981 J. Physique Lett. 42 L227 
Yeomans J M and Stinchcombe R B 1980 J. Phys. C: Solid State Phys. 13 L239 
Wu F Y 1982 Rev. Mod. Phys. 54 235 
Wu F Y and Stanley H E 1982 Phys. Reo. B 26 6326 


